DIFFERENTIAL ANALYSIS OF §
FLUID FLOW

A: Mathematical Formulation (4.1.1, 4.2,
6.1-6.4)

B: Inviscid Flow: Euler Equation/Some
Basic, Plane Potential Flows (6.5-6.7)

C: Viscous Flow: Navier-Stokes Equation
(6.8-6.10)




Introduction 1T
Differential Analysis o

e There are situations in which the details of the flow
are iImportant, e.g., pressure and shear stress variation
along the wing....

e Therefore, we need to develop relationship that apply
at a point or at least in a very small region
(infinitesimal volume) with a given flow field.

e This approach is commonly referred to as differential
analysis.

e The solutions of the equations are rather difficult.

e Computational Fluid Dynamic (CFD) can be applied
to complex flow problems.




PART A
Mathematical Formulation
(Sections 4.1.1, 4.2, 6.1-6.4)



Fluid Kinematics (4.1.1, 4.2)

o Kinematics involves position, velocity and
acceleration, not forces.

e kinematics of the motion:

velocity and acceleration of the fluid, and the
description and visualization of its motion.

e The analysis of the specific force necessary to
produce the motion - the dynamics of the
motion.
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4.1 The Velocity Field +
A field representation — representations of fluid

parameters as functions of spatial coordinate o

e the velocity field

17 = u(x, Wz, t)l + v(x, W, Z, t)} + w(x, W Z, t)/;

dl"A _ I—/—’
Particle A at Y|

Particle path | timet + &t dt
Particle A at

time ¢

A r,(r + 1)

! ) //
/A/

A change In velocity results in an acceleration which
may be due to a change in speed and/or direction.

17 = ?(x, Y, Z,t)

V:‘V‘z(uz +v° +w2)%



4.1.1 Eulerian and Lagrangian
Flow Descriptions oo

e Eulerian method: the fluid motion is given by completely
prescribing the necessary properties as functions of space and time.

e From this method, we obtain
Information about the flow Iin terms
of what happens at fixed points in
space as the fluid flows past those
points.

T =T(xg, vo, 1) ~_

Particle A:
T,=T,()

Yo
i

e Lagrangian method: following
Individual fluid particles as they move
about and determining how the fluid
properties assoclated with these
particles change as a function of time.

V4.3 Cylinder-velocity vectors
V4.4 Follow the particles
V4.5 Follow the particles
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4.1.4 Streamlines, Streaklines and Pathlines | 8822
X X

o0 o

e A streamline is a line that is everywhere tangenttothe | ° oo
velocity field. °°

e A streakline consists of all particles in a flow that have
previously passed through a common point.

e A pathline is a line traced out by a given flowing particle.

. |

Streamlines

V4.9 streamlines
V4.10 streaklines
V4.1 streaklines




4.1.4 Streamlines, Streaklines and Pathlines

e For steady flows, streamlines, streaklines and pathlines all
coincide. This is not true for unsteady flows.

e Unsteady streamlines are difficult to generate
experimentally, but easy to draw Iin numerical computation.

e On the contrary, streaklines are more of a lab tool than an
analytical tool.

e How can you determine the unsteady pathline of a moving
particle?



4.2 The Acceleration Field .

e The acceleration of a particle is the time rate
change of its velocity.

e For unsteady flows the velocity at a given
point In space may vary with time, giving rise
to a portion of the fluid acceleration.

e In addition, a fluid particle may experience an

acceleration because Its velocity changes as It
flows from one point to another in space.




4.2.1 The Material Derivative

e Consider a particle moving along its pathline

7=, (7o) =V (1), (),24(0) 1

Vg, 1) g1
Particle A at
time ¢ w,(ry, 1)
_ vy, 1)

Particle path ry =
T~ ﬁA(rA, 1




The Material Derivative .

e Thus the acceleration of particle A,

Vo =Vilrt)=Valxa (), v (6),2, (1), 1]

()= dv, oV, ov,dx, oV, dy,
dt ot ox dt oy dt

oV . dz
+ A A
\ Part?cle A at aZ dt
Particle path F 87 87 67 87
=— Ay, —A+y, —L+w, —4

ot OxX oy Oz




Acceleration

e This is valid for any particle

- oV oV oV oV
a=—+uUu—+v—=+w—

ot Ox oy Oz
ou ou ou ou

a, =—+u—+v—+w—
ot ox Oy Oz

ov ov ov ov
a =—+u—+v—+w—
ot ox Oy Oz

ow ow ow ow
a =—+U—+V—=+W—

- Ot Ox Oy Oz




Material derivative

e Acceleration:

Associated with time variation

ov oV

U—F+V—F W—

Associated with space variation

e Total derivative, material derivative or substantial

derivative
pL)_o0),,°00), 20, a0
oy Oz

(
Dt ot Ox
(

_00) . w7
_7+(V V)(

)



Material derivative

e The material derivative of any variable isthe’: .3
rate at which that variable changes with tinre ° e
for a given particle (as seen by one moving
along with the fluid — the Lagrangian
descriptions)

e If velocity Is known, the time rate change of
temperature can be expressed as,

DT or o oT oT
Dt ot 0x oy Oz

Example: the temperature of a passenger experienced on a train
starting from Taipei on 9am and arriving at Kaohsiung on 12.



Acceleration along a
streamline

. . _.
Vzu(x) izVo(lJrR—j i, a:aV v :(5_u+u5_uji
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4.2.2 Unsteady Effects

For steady flow o( )/ot =0, there is no change in flow
parameters at a fixed point in space.
For unsteady flow o( )/or = 0.

{ spatial (convective) derivative

DI = 2z +V -VT (foran unstirred cup of c:offeeE —> ) <0)
Dt ot Dt ot
T time (local) derivative
DV oV
Dt ot
T local acceleration V4.12 Unsteady flow

+V-VV




4.2.3 Convective Effects i
Water Hot
heater Ty > Tig Ezé—T-I-V-VT
| Dt Ot
Pathline DT oT
—=0+u,—
or_, Dt OS
ot I —T
:O+MS outAS n
DT
E:&O
Cold




4.2.3 Convective Effects

d convective acceleration

DV 7
4 = 24 +V-VV
Dt t
T local acceleration
D
Zu O+ua—u
Dt Ox
u=V u=V,>V
,1'2

i = 1;3 - 1;1 < V2
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4.2.4 Streamline Coordinates cete
o0 o
e In many flow situations it is convenient to use a coordinate | % 4¢
system defined in terms of the streamlines of the flow. e °
V=Vs
o
4DV _DV DS
Dt Dt
(’3V oV ds
ot 83 dt

Os Osds Os dn
4 + +
ot Os dt on dt

V4.13 Streamline coordinates




4.2.4 Streamline Coordinates

Steady flow
(Va—Vjs—l—V( asj
oS oS
ov _ V*_ oV Ve
=V n or a =V—, a, =—
oS R S R
5s |05 . os| 105 . 05 @
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6.1 Fluid Element Kinematics 1
e Types of motion and deformation for a
fluid element.
\ {r’////V
|7 o e
!f ~J = : : + I + \" \" + f/
-] | | | \ \ /
_____ _ JI |- ——
General Translation Linear Rotation Angular

motion deformation deformation



6.1.1 Velocity and Acceleration | ¢
Fields Revisited .o

e Velocity field representation

_ — —_—

If:V(xdazﬁ) or V:nﬁ+v}+w%

e Acceleration of a particle 2 Gn Gn Gw
a, =—+u—+v—+w—
Ot Ox y Z
- W W VO o, Oy
a=—+1u + v + W —- Cly=—+u + Vv + WwW—
ot ox oy 0z o ox oy Oz
ow ow  ow ow
= ¢ :5+u8x+v8y+w_z
&:DV:5V+(I7DV)I7
Dt Ot

v()-20:,20)5,20);
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Ox oy 0z



6.1.2 Linear Motion and Deformation

e Vvariations of the velocity in the direction of
velocity, 2, 2—; 2 cause a linear stretching
deformation. )

Consider the x-component deformation:

B u ( B C C'
p—- T
|
|
oy oy |
|
 + ou ox I
u ox |
— - - — -
0 ox A 0 ox A A

(a) (b)
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Linear Motion and Deformation s
The change in the original volume, 6+ = 0x0yoz, due to ou/ox:

Change Iin 0¥ = (Z—u 0x)(0yoz)(ot)
X

Rate change of 6#~ per unit volume due to ou/ox :
1 d(#) _ {(au/ax)ﬂ o

im =

o¥ dt 510 ot Ox

If velocity gradient ov/ oy and ow/ 0z are also present, then
1 d(o¥) ou N 8v+ ow

S¥ dt ox oy oz

— V.V <« volumetricdilatation rate

A
U+ 5

Sx
ax ¢

= =
- -

e The volume of a fluid may change
as the element moves from one
location to another in the flow -
field. . o

e For incompressible fluid, the | |
volumetric dilation rate is zero.

i ) .



6.1.3 Angular Motion and Deformation

e Consider an element under rotation and angular deformatio

U+ =—0y

dy

oy

V6.3 Shear deformation
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Angular Motion and Deformation eeeo
| _ oo
e the angular velocity of OA is o °
w,, = lim 5_05
o4 550 5t
e For small angles
8‘}536'51‘ s (%{O\)Or
tan s ~ dar = X =5t —
5_)(: 8_)(: ; u+%6v\' 5
so that =
(5v/§x)5t 5]} LI U f u+%6,\- "//,_‘/’/T.‘o‘/a’ 1: 77(3—";’_’5,\')61
Wy = gln% S5 0 b A 0 by
1> t - Sx

(a) (b)

if 2 ispositive then o». will be counterclockwise
P 04

Oox
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Angular Motion and Deformation oo
..
o’e
e the angular velocity of the line OB is
. op
Dos = I s ol
g =
tan of =~ Of = Z = Lot -y
5_)/ 5)/ Sy 8y //
SO that \I :” ‘ f v+%5.\‘ 'l///——”"‘/T-‘b‘fa’ 1: 77(%5.\‘)5;
oul oy ) ot N v
Do = Iim{( e }:5”‘
S5t—0 ot ay

¢ Ou - .- ) i
(if P IS positive, w,, Will be clockwise)
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Angular rotation T
V4.6 Flow past a wing
e The rotation, @, , of the element about the z axis 1s defingd ®

as the average of the angular velocities @, and ®os , If
counterclockwise is considered to be positive, then,

Lo _ou
~2( ox oy
similarly

_1({ow ov ( ou 8w]
W =—| —=-_= ) - _
2 oy Oz » " 2lz ox
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u v.ow




Definition of vorticity :

e Define vorticity £
;é =2w=VxV

The fluid element will rotate about z axis as an undeformed
block (ie: w,, =-w,, )

only when u__
oy Ox
Otherwise the rotation will be associated with an angular
deformation.
ou Ov

o If o o O vV xV =0, then the rotation (and the vorticity )

are zero, and flow fields are termed irrotational.



Different types of angular motions

e Solid body rotation

u¢:QI/‘ u =u :O

0, =20 o =w0,=0

10 10u,

w, =——\ru,
r or r 00

e [ree vortex

Uy =— u. =u, =0

Z

a)z:_a_(’”%)zo for r=0




Angular Deformation

ou

e Apart form rotation associated with these derivatives o

1% . c
and —- , these derivatives can cause the element to
undergo an angular deformation, which results in a change

In shape of the element.

e The change in the original right angle is termed the shearing
strain &y
oy =oa + of
where sy Is considered to be positive if the original right
angle Is decreasing.



Angular Deformation

e Rate of shearing strain or rate of angular deformation

7}:Iimﬁz

5t—>0 St

ov oOu
= —+4 —
ox Oy

lim
ot—0

[ Ov

Oox

—O0t+—0t

ou . |
oy

ot

The rate of angular deformation is related to a corresponding
shearing stress which causes the fluid element to change in shape.

ou ov

If 5 o ,the rate of angular deformation is zero and this
condition indicates that the element is simply rotating as an

undeformed block.
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6.2 Conservation of Mass s
o
Conservation of mass: Dj;[sys -0
t

In control volume representation (continuity equation):

% [ pd#+[ pV endd=0 (6.19)

To obtain the differential form of the continuity equation,
Eq. 6.19 is applied to an infinitesimal control volume.



6.2.1 Differential Form of Continuity 1T
= o
Equation o
o
[ X
e O
v s ou- l%ﬂﬁéu 3 'I ?S_r
P N
/.f W z ,f‘f &2 pu+ i{c‘gﬂ%{]é}—ﬁz
('_';__q 5.1{
0 op
— | pd¥=—oxoyoz
8t-[pd ot ? opu & opu & 0
Net mass flow in the direction [/m +ﬂ—x}5yﬁz - [/m —ﬂ—xky& = 2 sesvo
ox 2 ox 2 ox
Net mass flow in the y direction aﬂ&éy&z
Py
Net mass flow in the z direction  22% 55,5
0z

Net rate of mass out of flow | 924, 9pv  Opw S
ox Oy Oz



Differential Form of Continuity Equation

e Thus conservation of mass become

9o G OBy G0 _ (continuity equation )
o ox oy 0Oz

e In vector form

op ~
—+V-plV =0
o7

e For steady compressible flow

opu Opv Opw ~
+ + =0 _
| on | V-pr =0

e For incompressible flow

8u+8v+8w_0 ~
ox oy oz vV-r=0




6.2.2 Cylindrical Polar Coordinates

e The differential form of continuity equation




6.2.3 The Stream Function E

e For 2-D incompressible plane flow then,

ou Ov
+ =
ox Oy
Define a stream function v (x,») such that
, v oy
oy ox
O(odw | O oy o’y 0w
- = — =0
then 8x(8yj+8x( 8yj ox0y 0Oyox

For velocity expressed in forms of the stream
function, the conservation of mass will be satisfied.



The Stream Function

e Lines along constant ¥ are stream lines

Definition of stream line @ _V
dx u

Thus change of ¥, from (x,y) to (x+dx,y-|:dy)

dy = 6—l’ya’x+8—l’yaly = —vdx + udy
Ox oy
Along a line of constant y of we have dy =0

—vdx +udy =0 & _v

dx u
which is the defining equation for a streamline.
e Thus we can use ¥ to plot streamline.

e The actual numerical value of a stream line is not important but
the change in the value of ¥ is related to the volume flow rate.



he Stream Function

Note : Flow never crosses streamline, since by definition the
velocity is tangent to the streamlines.

e \olume rate of flow (per unit width perpendicular to the x-y

yr -+ g

dq = udy —vdx

_V 4 VY o= ay
oy Ox

)
g=["dy =v,-y,
1

If ¥.>w¥: then ¢ Is positive and vice versa.
e In cylindrical coordinates the incompressible continuity

equation becomes, ~ 10(m,)  1dv, _
> r or , r 06
_-9¥ __9¥
Then, v.="—, Vo=

Ex 6.3 Stream function



6.3 Conservation of Linear Momentum

e Linear momentum equation
fzﬂ Vdm
Dt dsys

_ %, _ =
ol ZFcontentsofthe :a-“CV V,OdV+ s V/OV'ndA

control volume

e Consider a differential system with om and ¥

D(V&m)
Dt

then SF =

e Using the system approach then

5F 5771z = 5ma

Dt




6.3.1 Descriptions of Force Acting on the
Differential Element

e Two types of forces need to be considered
surface forces : which action the surfaces of the

differential element.
body forces : which are distributed throughout the

element.

e For simplicity, the only body force considered is the
weight of the element,

SFy =8mg

or oF,

X

=omg, OF,, =omg, oF,

4

= omg .



e Surface force act on the element as a result of its e
Interaction with its surroundings (the components depend
on the area orientation)

Arbitrary
surface

Where 6F, Is normal to the area o4 and &F, and oF, are parallel
to the area and orthogonal to each other.
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e The normal stress ojs defined as, bt
o
X
o, =lim oF, o o
A—0 514

and the shearing stresses are define as

r,=lim— 7, =lim=—%
-0 54 A-0 54

we use O for normal stresses and 7 for shear stresses.

e Sign of stresses

Positive sign for the stress as
positive coordinate direction
on the surfaces for which the
outward normal is in the

positive coordinate direction.

Note : Positive normal stresses are tensile stresses, ie, they tend to stretch the material.



Thus

[Tu"' Iy ﬁ)b‘,\'éz
[ :] aTz 82\ 5 s
I / (T:x*‘:j‘:i‘f) O,\ b\
I —‘/6\.
i .
dO ¢ §x [ d0y §x S
( - 9’\ ? é b " —e—  —— I —# (Gxx+ ) 2)5\ b;_
—_—_
., &2 //// = ;
T+ *f)j ?) ox dy 4 oz

0
oF, =| 9% O | % | 515052
Ox oy 0z
0 0 0
OF = PO T 0x0ydz
g ox oy Oz
0
5F, =| 9% Lo 0% | 5557
ox 8)/ 0z

SF, =0F. i+0F ]+5 F_k
SF =S5F. +6F,

()Tvx 8y
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6.3.2 Equation of Motion oo
oF = oma,, 5}?} =oma,, OF, = dma, ° e

om = pPoxXoyoz

Thus
oo, Ot, Ot ou ou ou ou
pg. + + + =p| —+u—+Vv—+ w—
ox 0y 0z ot o0x 0y 0z
o0t 0o ot ov ov ov ov
+ =+ o4 2 = —tu—+vV—atw—
P8y " Tox T Tay | o2 p(@t “ox T ay Waz) (6.50)




PART B
Inviscid Flow:

Euler Equation/Some Basic, Plane
Potential Flows

(Sections 6.5-6.7)



6.4 Inviscid Flow
6.4.1 Euler’s Equation of Motion

e For an inviscid flow in which the shearing stresses are all
zero, and the normal stresses are replaced by -p, thus the
equation of motion becomes

e The main difficulty in solving the equation is the nonlinear
terms which appear in the convective acceleration.



6.4.2 The Bernoulli Equation

e For steady flow

pg-Vp=p(V-V)V
g=-gVz (up being positive)
(7-9)7 =29 (7 7)-7x(Vx7)

thus the equation can be written as,
—ngZ—Vp=§V(I7-I7)—p17x(w17)

or

Vp 1

7+§V(V2)+sz=I7x(VxT7)

e Take the dot product of each term with a differential length

ds along a streamline

o,

L. g5 +29(VF)-ds + gVz-ds =[P x(Vx7) ] -ds



e Since dsand ¥ are parallel, therefore

Vx(VxP)]-ds =0

e Since

ds=dxi+dyj+dzk

Vp-ds :6—pdx+a—pdy+a—pdz =dp
ox oy 0z
Thus the equation becomes

d?p+%d(V2)+gdz=O

where the change in p,7, and z is along the streamline




e Equation after integration become
dp V°
j £ +—+ gz = constant
o 2
which indicates that the sum of the three terms on the left side of

the equation must remain a constant along a given streamline.

For inviscid, incompressible flow, the equation become,

2

£+V—+gz:const o
p 2 ¥ For (1) inviscid flow
or (2) steady flow
2 2 3) incompressible flow
LU/ WL (3) p

y 2g y 2g ° (4) flow along a streamline



6.4.3 Irrotational Flow

layer

e If the flow is irrotational, the analysis of ; : <
inviscid flow problem is further simplified. ~ — ==

e The rotation @ of the fluid element is equal\q '
A o

to EVXV, and for irrotational flow field, & =~ 5

L~ —~1 -~

VxV =0 =
Sincev 7 = Z , therefore for an irrotational

flow field, the vorticity is zero.

e The condition of irrotationality imposes specific relationships
among these velocity gradients.

For example, 1(6v 6u
ZEEa_x_@):
ov Ou ow Ov ou ow
a o oy o | oz ox

e A general flow field would not satisfy these three equations.



Can irrotational flow hold in a viscous | ¢
fluid? .

According to the 2-D vorticity transport equation (cf.
Problem 6.81)

D¢ 2
= 4%
Dt o
e Vorticity of an fluid element grows along with its
motion as long as vis positive. So, an initially
irrotatioal flow will eventually turn into rotational flow
In a viscous fluid.

e On the other hand, an initially irrotatioal flow remains
Irrotational in an inviscid fluid, 1f without external
excltement.



6.4.4 The Bernoulli Equation for Irrotational F|OV\l oo

e In Section 6.4.2, we have obtained along a streamline that,
[Vx(VxV)]-dS=O
In an irrotational flow, Vx¥7 =0 , so the equation is zero

regardless of the direction of ds.
e Consequently, for irrotational flow the Bernoulli equation is

valid throughout the flow field. Therefore, between any flow
points in the flow field,

2
jd—p+V—+ gz = constant
o 2
or
2 2
a N,
y 28 y 2g

% For (1) Inviscid flow (2) Stead flow
(3) Incompressible flow (4) Irrotational flow



6.4.5 The Velocity Potential s

e For irrotational flow since
VxV =0 thus V=V¢

o6 00 08
Ox oy 0z

u =

so that for an irrotational flow the velocity Is expressible as
the gradient of a scalar function ¢ .

e The velocity potential Is a consequence of the irrotationality
of the flow field (only valid for inviscid flow), whereas the
stream functzon IS a Consequence of conservation of mass
(valid for inviscid or viscous flow).

e Velocity potential can be defined for a general three-
dimensional flow, whereas the stream function is restricted
to two-dimensional flows.



e Thus for irrotational flow

—_—

VxV =0 V =V¢, further with V-7 =0 for incomp. flow:

2 4
In Cartesian coordinates, PV o T

e Thus, inviscid, incompressible, irrotational flow fields are
governed by Laplace’s equation.

e Cylindrical coordinate
v()-20, 120, 20)
or r 060 0z
V¢=§£a+£§é@+§£@
or r 06 0z
where ¢=g¢(r,0,z)

eZ

Since V =v.e. +v,e,+v.é.

Thus for an irrotational flow with V' =V¢

2 2
La,09) 100 5%,
ror\ or rc o060 oz




Example 6.4 . T

Vv -~ Streamline { y = constant)

’,

Equ-botemial
line
(¢ = constant

v =12—g:4r00520=% $ =22 0520+ f,(6)

oy : 10¢ )
=——" =_4rsin20=——- ¢ =2r“cos26
U, 2 r Sl y: ¢ = 2r° CoS +f2(r)

Thus ¢=2r>cos20+C

The specific value of C is not important, therefore
¢ = 2r° cos 20

V2 =(4rcos20)’ +(—4rsin20)" =16/

Py . V12 _ P n V22

y 28 v 2g




6.5 Some basic, plane potential flows | ¢

e Since the Laplace equation is a linear differential equation,| ®
various solutions can be added to obtain other solutions.

a ¢:¢1+¢2

e The practical implication is that if we have basic solutions, we
can combine them to obtain more complicated and interesting
solutions.

e In this section several basic velocity potentials, which describe
some relatively simple flows, will be determined.
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e For simplicity, only two-dimensional flows will be 2o
considered. see
velocity potential : « :%, v:% or v, :%, v, :E%
ox oy or r 06
stream function : uza—, v:—a—‘” or v, :16_9’/, ng_a_w
oy Ox r 06 or

e Defining the velocities in terms of the stream function,
conservation of mass is identically satisfied.
Now impose the condition of irrotationality,
ou ov

Thus oy ox

2 2
a(az,uj 8(_8_1,uj o v v _,

oy \ Oy :8_)6 oxt  oy°
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e Thus for a two-dimensional irrotational flow, the velocity .
potential and the stream function both satisfy Laplace e
equation. o o

e It is apparent from these results that the velocity potential
and the stream function are somehow related.

Along a line of constant y, diy =0 v

dly:a—l/jdx+ al/jdy = —vdx + udy Vv Ju
Ox oy £ }"":_FF

_ oV
udy = vdbx, @ _v =0y
dx u

Along a line of constant ¢, d¢ =0

e ¢ 0;5
dy u

udx =—vdy, —=——
4 dx %

a’x + dy =udx+vdy =0

Streamline
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e Therefore, the equations indicate that lines of constant ¢ §§:°
(equote_ntlal lines) are orthogonal to lines of constant v | °° ¢
(stream line) at all points where they intersect. ¢ @

Equipotential line
(¢ = constant)

Q: Why V,>V,?
Streamline [ooac] How about p, and p,?

(v = constant)




6.5.1 Uniform Flow

e The simplest plane flow is one for which the streamlines are
all straight and parallel, and the magnitude of the velocity is

constant — uniform flow. y 5 g
—_— 1y =y,
u=U v=0 — V=¥,
SR (NS T e
0 0 T—
—¢=U, _¢:0 e e e e
Ox oy ‘. I
¢p=Ux+C 6=9 ¢=9

e Thus, for a uniform flow In the positive x direction,

¢ =Ux
e The corresponding stream function can be obtained in a
similar manner,

W _y Vg 5 y-ty
oy ox




e The velocity potential and stream function for a
uniform flow at an angle a with the x axis,

¢=U(xcosa + ysin o) [ .f/i/

w =U(ycosa —xsina) //",;r:\ .




6.5.2 Source and Sink- purely radial :
flow oo

e Consider a fluid flowing radially outward from a line through
the origin perpendicular to the x-y plane.

Let m be the volume rate of flow emanating from the line (per
unit length).

Conservation of mass y
L Ennstant Sy ¢ = constant
27cr(v,)=m or v, =" N e /
271 j\
/ \ 1 ,
e Also, since the flow is purely radial,  / %
0\

velocity potential becomes, v, =0

\
O¢ _m | 109 0 \ Y,
or 2nr r 06 % 4

m i 2
¢p=—->Inr —
27T



Source and Sink flows .

If m 1S positive, the flow Is radially outward, and the o o
flow Is considered to be a source flow.

If m IS negative, the flow is toward the origin, and the
flow Is considered to be a sink flow.

The flow rate, m, Is the strength of the source or sink.
The stream function for the source: vecomstat Ly oo

Y > il e
~
\}/\ /

~
/N

Loy _m v _o ., ,_my / ‘>(\;

r 00 2w  Or 2 \

Note: At =0, the velocity becomes infinite, which is of
course physically impossible and is a singular point.



6.5.3 Vortex-streamlines are
concentric circles (v,=0) oo

e Consider a flow field in which the streamlines are concentric
circles. 1.e. we interchange the velocity potential and stream
function for the source.

Thus, let

w = constant

p=K6O and w=—KInr

where K IS a constant.

_ Ly oy K (free vortex)

vg_r@@ or r

¢ = constant



Free and Forced vortex E

e Rotation refers to the orientation of a fluid element and not o0
the path followed by the element.

A\ v ”%
F \

Free vortex Forced vortex

e If the fluid were rotating as a rigid body, such that v, = Kr,
this type of vortex motion is rotational and can not be
described by a velocity potential.

e Free vortex: bathtub flow. v6.4 vortex in a beaker
e Forced vortex: liquid contained In a tank rotating about Its axis.




Combined vortex E

e Combined vortex: a forced vortex as a central core and a free
vortex outside the core.

V, =0r 1=V,
K

r

where K and r are constant and r, corresponds to the radius of
central core.



Circulation 1T
o
e A mathematical concept commonly associated with vortex se
motion is that of circulation. o o
[=¢7-ds (6.89)

C .
The integral is taken around curve, C, in the counterclockwise
direction.

Note: Green’s:cheorem In the Plane dictates
T(VxV)-kKdxdy =14V -ds
R
e For an irrotational flow

V=Vp>V-ds=V¢-ds=dg
therefore,

ds
Arbitrary
curve C

r=§ d¢=0 \

For an irrotational flow, the circulation will generally be zero.
However, If there are singularities enclosed within the curve,
the circulation may not be zero.



Circulation for free vortex

K o
e For example, the free vortex with Vo =

= j (rd6)= 27K K=
27

Note: However /" along any path which does not include the
singular point at the origin will be zero.

e The velocity potential and stream function for the free vortex
are commonly expressed In terms of circulation as,

5L (6.90)

v=—Inr (6.91)



Example 6.6

Determine an expression relating the surface shape to the
strength of the vortex as specified by circulation /.

——9
? 27T

e For irrotational flow, the Bernoulli equation

VZ VZ
R T = £2 +z, p=p,=0
y 2g 4 2g
2 2
v - o
2g 2g
Vv, 1(’9¢: 2 V, =0

r o0 2rr

FZ

ZSZ_87Z22
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6.5.4 Doublet , e
e Consider potential flow that is
formed by combining a source o, /
and a sink in a special way. b
e Consider a source-sink pair % | Ao it !
Source /T\ Sink
PRI SO
m 2y tan 6, —tan 6,
=——(6,-6 tan| -——— [=tan(f, -6, )=
v=rome) = ( m j (6-6) 1+tan 6, tan 6,
: In In
Since tané, = rsing and tané, = rsing
rC0SH —a rCcosél +a
2 2arsin g 1 2arsin @
Thus tan( m’”j azr — > w=——"tan 1( azr .
m rc—a 27T r°—a
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Doublet oo
o
For small values of « o o
. m 2arsin @ o marsin @
W 272_ 1/'2 _aZ 72_(}/2 _a2) (694)

e Doublet is formed by letting the source and sink approach one
another (¢ — 0 ) while increasing the strength m (m — o) so

that the product ma/z remains constant.
As a0, rlir*—a*)—>1lr

EQ. 6.94 reduces to: Ksing

r
where K = malz 1s called the strength of the doublet.

e The corresponding velocity potential is
K cosé
¢ = (6.96)

r




Doublet-streamlines

%

r

Ve

Streamlines for a doublet

_0¢p 10y Kcosd

o rof

r

2

_10p_ oy _ Ksing

100

or

r

2



e Summary of basic, plane potential flows

B TABLE 6.1
Summary of Basic, Plane Potential Flows

Description of Velocity
Flow Field Velocity Potential Stream Function Components”

Uniform flow at ¢ = U(xcos a + ysin a) = U(ycosa — xsina) u = Ucos a
angle « with the x v = Usin «a
axis (see Fig.
6.16b)

Source or sink m m m
(see Fig. 6.17) b = o In-r = gé‘ U=
m = 0 source v, =0
m < 0 sink !

Free vortex I I
(see Fig. 6.18) ¢ = EQ V= o In-r v, =0
I'>0 I
counterclockwise Vg = S

. 2mr
motion
I'<0

clockwise motion

Doublet .
K cos 0 Ksin 0 K cos 0
see Fig. 6.23 = = — v, = —
Fig. 6.23 . >
- r r r
Ksin 0
vﬁ = - b
2

"Velocity components are related to the velocity potential and stream function through the relationships:
ad A adh il ad | N | d¢ afr

H=-——= V== Y =—=—"  Yy=———= :
ax  ay ay ax Tar r e LAY ar




6.6 Superposition of Basic, Plane | ¢

Potential Flows
Method of superposition

e Any streamline in an inviscid flow field can be
considered as a solid boundary, since the conditions
along a solid boundary and a streamline are the same-
no flow through the boundary or the streamline.

e Therefore, some basic velocity potential or stream
function can be combined to yield a streamline that
corresponds to a particular body shape of interest.

e This method is called the method of superposition.
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6.6.1 Source in a Uniform Stream- Half-Body| see
. .. . o0 o
e Consider a superposition of a source and a uniform flow. | ¢- ¢
e The resulting stream function is °°
W =W uniform flow T ¥ source
—Ursin@+--0 (6.97)
27T
and the corresponding velocity potential is
m
¢ =Ur COS@JFE'”V V6.5 Half-body
v = nblU
U ¥y Stagnation point
" Stagnation e ?ITEJ
L point 4 l
e \%VB : r
: “f
il Source
—_ b L



v =nblU

Stagnation point 000
13
e For the source alone .
" 3
Ve = o ° o
27
Let the stagnation point occur at x=-b, where ¢ = %
SO p=_"_
27U

The value of the stream function at the stagnation point can be
obtained by evaluating x at »=>b and &=r, which yields from
Eq. 6.97

m
W stagnation = E =mU

Thus the equation of the streamline passing through the
stagnation point is,

_b(z-0)

~ sing

zbU =Ursin@+bU@BO  or r

(6.100)



e The width of the half-body asymptotically approaches 27b.
This follows from Eq. 6.100, which can be written as
y=b(r-0)
so that as &0 or ¢—2r, the half-width approaches 4.

v = bl
Stagnation point

N

e With the stream function (or velocity potential) known, the
velocity components at any point can be obtained.

v, zla—WZUCOS(9+i
r 00 27
Vy =—a—l//:—Usin6’
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000
:0
e Thus the square of the magnitude of the velocity V at any ~
point is, S o’e
Ve=y? +V92 =U*’ + M eos +( e )?
Y 27Ty
since b= —"—
27U
; ; b b*
Ve=U"|1+2—cos0+— (6.101)
r r
e With the velocity known, the pressure distribution can be
determined from the Bernoulli equation,
1 1
po+§pU2 =p+§pV2 (6.102)

Note: the velocity tangent to the surface of the body is not zero;
that is, the fluid slips by the boundary.



[ X )
o0
Example 6.7 oo
[ X |
[ ]
2
V2=U2(1+Zécosé’+b—2] °
r r
on the surface =r/2 r= b(7_[_6’) _
sin @ 2

Thus V?=U? (1+i
T

b

)
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6.6.2 Rankine Ovals eels
o0 [
e Consider a source and a sink of equal strength combined | . o9
with a uniform flow to form the flow around a closed body. | © ©
The stream function and velocity potential for this
combination are,
- m m
w=Ursin@———(6,-6,) ¢=Urcosd——_(>nrn—Inr,)
27T 27T
v (7 -
e /@ r F-l
— A, 8, __HFJ-’:
- e e 1 -+
—  Source /f\ Sink R 3
A L”' —a—----—u-———J —L‘\ __/""




Stagnation Stagnation
point y=0 point

As In Section 6.5.4
, m ., 4 2arsing ::;i; - i T %E:::“ﬂ‘
w =Ursin 8 ———tan ( j +m _fﬁxv h

27 1 — g’

T x“+y~—a

m ) 9 ﬂ\_//-__
or y/:Uy—ztanl[2 f 2] M

The stream line =0 forms a closed body.

Since the body is closed, all of the flow emanating from the source
flows into the sink.

» These bodies have an oval shape and are termed Rankine ovals.
 The stagnation points correspond to the points where the uniform

velocity, the source velocity, and the sink velocity all combine to
give a zero velocity.

 The location of the stagnation points depend on the value of a, m ,
and U.



The body half length:

7
m +1)

(ma zj% [ (
[=| —+a or —=
U a wUa
m
source:  y =——
271
Therefore
v-—" " _9
27z(r—a) 27z(r+a)
m 2a
U — =0
27 1t —a’
1- " 21 2:O or r*—a’
U r° —a

) %
2 e ‘1
—_— —h-OJf-— e
A 4 .
— Source Sink
» L-- - a —J‘
—

Stagnation
point

Stagnation
point

y=0
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e The body half width, %, can be obtained by determining =
the value of y where the y axis intersects the =0
streamline. Thus, from Eq. 6.105 with =0, x=0, and y=h, | " ,°
It follows that
m ., 4 2ay m ., 4 2ah
= Uy ——rtan — 0=Uh——-rtan
e 2r [x2+y2—a2j 2 (hz—a2
Stagn_ation -0 Stagnatinn
tanl( 2ah j_ Uh2r P & o
h* —a’ m ’ S —
2ah 272U m B
h2 _aZ = tan m —#\/_f]
5 B 5 v
b h —a an 2Uh J —
2a m

-3 (4) 2214 o 2]

J
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e Both //a and /a are functions of the dimensionless | ¢ .
parameter Ua/m. -
e As /[/h becomes large, flow around a long slender body i1s® ©

described, whereas for small value of parameter, flow
around a more blunt shape iIs obtained.

e Downstream from the point of maximum body width the
surface pressure increase with distance along the surface.
In actual viscous flow, an adverse pressure gradient will
lead to separation of the flow from the surface and result
In a large low pressure wake on the downstream side of
the body.

e However, separation Is not predicted by potential theory.

e Rankine ovals will give a reasonable approximation of
the velocity outside the thin, viscous boundary layer and
the pressure distribution on the front part of the body.

V6.6 Circular cylinder

V6.8 Circular cylinder with separation
V6.9 Potential and viscous flow
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6.6.3 Flow around a circular cylinder 1T
o
e When the distance between the source-sink pair approaches © - oo
zero, the shape of the Rankine oval becomes more bluntand © °©

approach a circular shape.

e A combination of doublet and uniform flow will represent

flow around a circular cylinder.
Kﬂn&_(

r

stream function: w =Ursin@—

K cosé

r

velocity potential: ¢ =Urcosé +

to determine K with =0 for r=a,

L
¥

U — 0 —» K=Ud’

U—%Wrsinﬁ

2U
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t
e Thus the stream function and velocity potential for flow °
around a circular cylinder are oo
o O
2
szr[l—asziné’ ”
r gk

2
¢ =Ur 1+a—2 cosé
r 2U

e The velocity components are e
vr:%ZEG_‘V:U '
57” r 50 >
"y

T
r 06 or

e On the cylinder surface (r=a):

Potential flow around
a circular cylinder

v.=0 and v,=-2UsIné



e Therefore the maximum velocity occurs at the top °
and bottom of the cylinder 8= *4/2 and has a o e
magnitude of twice the upstream velocity U.

e The pressure distribution on the cylinder surface Is
obtained from the Bernoulli equation,

1 L
p0+1pU2 :ps+_pv6’s2 .
2 2 g
1 _ Loy
. :po+§,oU2 (1—45|n29) Y 2v

T
where p, and U are pressure and gf D
= - l'

velocity for point far from the
cylinder.




Experimental \’1

Theaoretical
(inviscid)

0 30 60 90 120

150

180

e The figure reveals that
only on the upstream part
of the cylinder is there
approximate agreement
between the potential
flow and the
experimental results.



e The resulting force (per unit length) developed on the
cylinder can be determined by integrating the pressure over
the surface.

27
F =—Jps cosfadd =0
0

27
F,=—| p,sin6ad6 =0
0

® Both the drag and lift as predicted by potential theory for a
fixed cylinder in a uniform stream are zero. since the pressure
distribution Is symmetrical around the cylinder.

e In reality, there is a significant drag developed on a cylinder
when it is placed in a moving fluid. (d’ Alembert paradox)

Ex 6.8 Potential flow--cylinder
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e By adding a free vortex to the stream function or velocity | 99
potential for the flow around a cylinder, then o
B a’ ) . I | oo
w =Ur 1—}/—2 smé’—g nr (6.119)

2

a I
=Ur|1+— 0+—0
p=Un ez jCosOr o (6.120)

where I" is the circulation
e Tangential velocity on the surface (r=a):

oy

or

Vg = =-2UsIn ¢9+L (6.121)

27

r=a

e This type of flow could be approximately created by placing a
rotating cylinder in a uniform stream. Because the presence of
viscosity in any real fluid, the fluid in contact with the rotating
cylinder would rotate with the same velocity as the cylinder, and
the resulting flow field would resemble that developed by the
combination of a uniform flow past a cylinder and a free vortex.



e Location of the stagnation point

Vs

if T=0 — 6’\3
if —1<T'/4zUa<1— 0
if T'/4zUa>1 — H\Sta

W |

(b)

27

Po—
1

2

Ps—Po

pU?

=0 or r
tag

-3

O:—2U1=,|n6’+L — sin 6’\

stag

AxUa

. Is located away from the cylinder

- IS at some other location on the surface

I'/AnUa =

0

b T

Top half

Bottom half

90

180
6 deg

270

360



e Force per unit length developed on the cylinder

2
p0+£pU2 =p. +1p(—2Usin¢9+L)
2 2 2ra

D, :po+%,0U2 £1—4Sin26’+

2r'sing I
mralU A’ a’U?

27
F :—f p, C0sBadf =0
0

2r UFZE
F,=-{ p,sinfadd = J’TI sin® 0d0 = — pUT
0 0

e For a cylinder with circulation, lift is developed equal to the
product of the fluid density, the upstream velocity, and the
circulation.

F,=-pUl

U(+) I'(+, counterclockwise) the F,, is downward

The development of this lift on rotating bodies is called the
Magnus effect.



6.7 Other Aspects of Potential Flow
Analysis oo

e EXxact solutions based in potential theory will usually provide at
best approximate solutions to real fluid problems.

e Potential theory will usually provide a reasonable approximation
In those circumstances when we are dealing with a low viscosity
fluid moving at a relatively high velocity, in regions of the flow
field in which the flow is accelerating.

e Outside the boundary layer the velocity distribution and the
pressure distribution are closely approximated by the potential
flow solution.

e In situation when the flow is decelerating (in the rearward
portion of the bluff body expanding region of a conduit), and
adverse pressure gradient is reduced leading to flow separation,
a phenomenon that are not accounted for by potential theory.

V6.10 Potential flow




PART C
Viscous Flow:

Navier-Stokes Equation
(Sections 6.8-6.10)




6.8 Viscous Flow
Equation of Motion

5Fx=5max 5fy=5may 5;:225’/”612
om = pPoXxo0yoz
Thus
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6.8.1 Stress-Deformation Relationships| ssee
. . . 000
When a shear stress is applied on a fluid: eooo
* Fluids continuously deform (stress =~ rate of strain) Shte
* Solids deform or bend (stress 7 ~ strain)
: R — >
ff ; f ,.rf ’1;‘ ;{2
! ! !y t g
! / !/ {; 2
! i iy 1/
r: 'I i i
I _
ia) Solid (H) Fluid
Fig. 1.1 Behavior of a solid and a fluid, under the action of a constant
shear force. _ 8l
. . . M M’ P P’ e B
strain rate ~ velocity gradient , l AT iy ]
| | .
Fluid e\ement_’: : /. Fluid element
y at time, | oy ; at time, t + 6t
do _ du | e g
dt dy \ ' e
N O

Fig. 2.7 Deformation of a fluid element.

from Fox, McDonald and Pritchard, Introduction to Fluid Mechanics.



6.8.1 Stress-Deformation Relationships| see

e For incompressible Newtonian fluids it is known that
the stresses are linearly related to the rate of

deformation.

V1.6 Non-Newtonian behavior

For incompressible, Newtonian fluids, the viscous stresses are:

O-xx,vi sC Txy sz
TViSC,;'j = z-yx O-yy,visc Z-yz
| sz sz GZZ,ViSC i

2

ov

=

ov

ay
oV

N

+

ox
ov

=

Oox

+

Oz

avx a\/y

d

4
oy Ox

| «

6‘)2 avx
_I_

ox oz
ov
y_'_avz

oz




6.8.1 Stress-Deformation Relationships

But in normal stresses, there is additional
contribution of pressure p, where

-p=2(0.+0,+0.)

Consequently,

for normal stresses  for shearing stresses

o.=—p+2 a—u T =a = 8_u 4 a_U
XX p /Ll ax Xy VX Iu ay ax
ov By &
O =—p+2u— T
Yy p ’Ll ay Z-yz sz /Ll 82 + ay j
ow ow Ou
O . = + 2 i — — 4
pres Oz e Ox 82)

Can you figure out why the normal viscous stress can be

xx,VISC
expressed as 24 a%x ?



6.8.1 Stress-Deformation Relationships

e For viscous fluids in motion the normal stresses are °

not necessarily the same in different directions, thus,
the need to define the pressure as the average of the
three normal stresses.

e Stress-strain relationship in cylindrical coordinate

3 ov, - ’ 8(_) E@Ur
N or o ,u\ or r 06

1ov, v, (ov. 1 06v
__p+2/’l( 9+ j T, =7 , = _‘9_|__ Zj
89 7 Oz z6 /Ll\ 52 iz 69

_ ov, . (ﬁu”r@uzj
@Z rz zr lLl 82 87"

Note: Notation7,, x: plane perpendicular to x coordinate
y. direction



L X
L X
5 . o0
6.8.2 The Navier-Stokes Equations .
e The Navier-Stokes equations are considered to be :
the governing differential equations of motion for
Incompressible Newtonian fluids
/a_u+u6_u+08_u+wa_u ——8—p+ + 82I“t+(’921’£+827’l
Plac o oy Nar) ax T e o o

o’v 0°v 0°v
2 T 2 + 2
ox- oy° oz
’w  O*w  O°w
2 + 2 + 2
ox- oy° oz

=——+pgy+ﬂ(

:_—+sz+,“(



The Navier-Stokes Equations

e Interms of cylindrical coordinate

E@ur ov, v, 0v U 8urj
Jo, +0 + ——=+p,—*

oo "or r ol r oz

__8_p+ N }ﬁ(rﬁurj_uwl8zur_2809+820,,
o TR E o ) R e o0 o
5 %“)r 809+09 5UH+UFUH+UZ%
ot or r 060 r oz
1op 10( ov,) v, 10v, 20dv v,
=————+pg,+ Ul — ——+ — +
o e ﬂ(r@r(r Grj 2 200 o0 o
(802 ov, v, 0v, 8uzj
Jo, +u —=+ +0,
ot or r 06 oz
__8_p+ N E&(rﬁuz}rl 8202+8202
o T e o ) e o

|




6.9 Some Simple Solutions for :
Viscous, Incompressible Fluids

e There are no general analytical schemes for solving
nonlinear partial differential equations, and each
problem must be considered individually.

ou Ou  Ou ou op o'u 0u Ou
pl —tu—+0—+w— |=——+pg + Ul —+—5+—
ox° oy° oz

99, 02, 00, OO G, . .00, 00, T
P 8 PETH a2 T o o

UL AL T 82W+82W+82W

Nonlinear terms



6.9.1 Steady Laminar Flow Between
Fixed Parallel plates

)

),t y — |/
o,
h b4
'

I

i

~

(a)

v=0,w=0
Thus continuity indicates that
% _o
ox

for steady flow, u=u(y) o2

g.=0,g,=-gandg.=0  rlGruyt

ol —+u—-+




. . X X )
Steady Laminar Flow Between Fixed | see
o
Parallel plates se
o0
Thus \ o i
2 T ¥ — 1/ u
O:—6p+,u81§ i
ox = 0Oy 5 1:; =
O— 8p _ i+ ) L )
__a_pg _)p__pgy—i_fl(x) (a) (»)
op
= o BT N G o o O, T,
.~ AT e | az) G LR BE af
d_’;‘ =GP v, v, dv v (v P
dy®  u Ox Ploe "o Tay ez oy LT R o7 o
du 1(0p C ow,  ow ow ow| o (O &w &w
@ G L' Ne e e TN GE GE af
1 (op) ,
=—|— |y +Cy+C
zlu(axjy VT4

( apax Is treated as a constant since it is not a function of y)



Steady Laminar Flow Between Fixed
Parallel plates

the constants are determined from the boundary
conditions. .11 No-slip boundary conditions

BCs: u=0 for y==h
Thus C, =0 : ,

! Y —_—
. 1 (apth Jr )7)( lg %
21\ Ox i ]

(a)

Thus the velocity distribution becomes,

1 (6
uzzﬂ(aij(yz_hz)

which indicates that the velocity profile between
the two fixed plates is parabolic.

V6.13 Laminar flow

2:

5




Steady Laminar Flow Between Fixed §§
Parallel plates gs

e The volume rate of flow

The pressure gradient is negative, since the pressure
decreases in the direction of the flow.



Steady Laminar Flow Between Fixed
Parallel plates

If Ap represents the pressure drop between two
points a distance ¢y apart, then

Ap _ Op

v o

q__ghBGp_Zh?’Ap V_q_thp
3 uox  3ul’ 2h  3ul

e The maximum velocity u
the two plates, thus

max » Occurs midway y=0 between

h? op 3
Umnax = _Za or Umnax = 2

i

max




Steady Laminar Flow Between Fixed s
Parallel plates .

e The pressure field

p=—pgy+ f(x)

Ji(ﬂ{i@ﬂpo

where p, is a reference pressure at x=y=0

Thus the pressure variation throughout
the fluid can be obtained from
apjﬁpo

= — + | —
p=-pev+( 2

e The above analysis is valid for Re=
remains below about 1400

PV 2h
U

Problem 6.88: 10 tons on 8psi




Moving

plate 000
000
6.9.2 Couette Flow oo
o
’ o
e Therefore oo
U= 1 (819))/ +Cy+C,
2u\ Ox
boundary conditions . =
u=o at y=0, u=U at y=Db o o s
R NCATS Jos N\~
u_Uy+2,U(8Xj(y by) oy f")
or in dimensionless form e _ L
i X_ b2 (apj( j(l_lj 90.4 0.2 0 .- 02 04 06 08 10 12 14
U b 2uU\ox )\ b b T

The actual velocity profile will depend on the
dimensionless parameter

2
2uU \ Ox

This type of flow iIs called Couette flow.




Couette flow .

e The simplest type of Couette flow is one for which the o
pressure gradient is zero I.e. the fluid motion is caused ¢ ©
by the fluid being dragged along by the moving

boundary. P _,
Ox
Thus U= U%

which indicates that the velocity varies linearly
between the two plates.

_ Lubricating
e e.g. ' Journal bearing oil
lo7li <<, Rotating shaft

The flow in an unloaded

journal bearing might be Housing
approximated by this simple o
Couette flow.



Example 6.9 30

u=w=0 —=0 Uzu(x)
Oy
O
a_p _ 8_10 — 0 e O
ox 0Oz
T | Fluid ayer X =h p=atmospheric pressure
Vo

oy g
l dx dz
g

_ Therefore ,
A d U

O=—pg+u—->
PE o

—I-/}'ﬂ—

dzu_)/

¢

R @=1x+cl

dx u
on the film surface x=h, we assume that the shearing stress is

Zero dv
fxyz,u(g] r,=0at x=h

c =1
Y7,



2nd integration

v=-""x —7/—hx+C2

2 H
x=0 v=V, -.C,=V,

Uzsz—}/—hx—irVo

2 H

Ve
qzjohudx:Ih(sz—y—hx+%jdx I

0

2p H
3
3u

The average film velocity

h |=—

/Fluid layer

Only if 7, >g—i’j , Will there be a net upward flow of liquid.

Q: Do you find anything weird in this problem?



6.9.3 Steady, Laminar flow In
Circular Tubes oo

e Hagen—Poiseuille flow or Poiseuille flow
steady, laminar flow through a straight circular tube
of constant cross section

e Consider the flow through a horizontal circular tube
of radius R

Assume the flow is parallel




Steady, Laminar flow in Circular Tubes

Thus 1
O:—ngOSH——a—p g, =—gsing
r 06

O:—pgﬁnH—JQ g, =—gcoso

r

Integration of equations in the r and 6 directions
p=—¢g79n9+sz)
=—pgy+ £,(2)
which indicate that the pressure is hydrostatically

distributed at any particular cross section and the z

component of the pressure gradient, op/oz , is not a
function of r or 6.




Steady, Laminar flow in Circular Tubes |

e the equation of motion in the z direction
10 ( Ov, j 1op -
ror\ or U Oz

I"avz = ! (apjl”2+cl
or 2u\o

yA

=i(a—pjr2+Cllnr+C2
4u\ oz

e Boundary conditions

z

At r=0, v, is finite at the center of the tube, thus C,=0
Atr=R, v, =0, then (, _—1(6‘0ij
4u\ oz

Thus the velocity distribution becomes,
- (@9]@ R
4u\ Oz
That Is, at any cross section, the velocity distribution is parabolic.
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e Volume flow rate ©
dQ =v_(2m)dr

R R 4
0= 27[! v rdr = 27z'[ i(a—pj(rz —Rz)m’r = _ZK G
0 0 4ul\ oz 8u Oz

Ap  Op R Ap L
Let £ -_2,then 0= - )
; 5 8 1 Poiseullle’s law

e Mmean velocity
0 RAP
_7ZR2 8l _

e maximum velocity

_R_z(@_pj R°Ap

“au\oz) Awe SO Ve =2V

e the velocity distribution in terms of v,

% r ’
s
Vi R

max




6.9.4 Steady, Axial, Laminar Flow In
an Annulus

v, = L (@pjr +C, Inr+C,
4ul\ o

e B.Cs :v,=0atr=r,and r=r;

thus v :i(a_pj rz—rz-i— 1/2.2—1/'02 In(r /7”)
: 0z ° ( ) o

e Vvolume rate of flow

2 2 2
Q= J‘V 27rrdr_—8_(g_lz9j 7’04—7;4—(ro 7”,-)

P\ a4
8,Ll€ o I




The maximum velocity occur atthe »=r,, ov_ /or=0

22 » °°
i _|:2|n(7'0/7;-):|

The maximum velocity does not occur at the mid point of the
annulus space, but rather it occurs nearer the inner cylinder.

e To determine Reynolds number, it is common practice to use an
effective diameter “hydraulic diameter” for on circular tubes.

D — 4 % cross - sctional area
" wetted perimeter

pD,V
Y2

Thus the flow will remain laminar if R, = remains below 2100.




6.10 Other Aspects of Differential §§
Analysis

Vel =0
p[%—lj+?0VVj=—Vp+pg+yV2?

e The solutions of the equations and not readily available.

6.10.1 Numerical Methods

e Finite difference method
e Finite element ( or finite volume ) method
e Boundary element method

V6.15 CFD example
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